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Sequences & Series

Sequences :
An infinite sequence of numbers is a function whose domain is the set of positive

integers.
EX:
(a.} = {V1, V2, V3,...,Vn,...}
j il (R .
[Ba} = § Li=Siga—F5wns {——1}**-—q...}
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DEFINITIONS  Converges, Diverges, Limit
The sequence {a,} converges to the number L if to every positive number € there
corresponds an integer N such that for all n,

n>N = lap, — L| < e.

If no such number L exists, we say that {a,} diverges.
If {a,} converges to L, we write lim,— a, = L, or simply a, — L, and call
L the limit of the sequence (Figure 11.2).

EXAMPLE 1 Applying the Definition

Show that

(a) lIim %— = 0O (b) Iim kA = Kk (any constant k)

n— o0 F1—=>



Solution

(a) Let e > 0 be given. We must show that there exists an integer N such that for all n,

=0

n < E.

n>N =

This implication will hold if (1/n) < € or n > 1/e. If N is any integer greater than
1 /€. the implication will hold for all n > N. This proves that lim,—(1/n) = 0.

(b) Let e > 0 be given. We must show that there exists an integer N such that for all n,

n>N = \k — k| <e.

Since kK — k = 0, we can use any positive integer for N and the implication will hold.
This proves that lim,—« k = k for any constant &. B



EXAMPLE 2 A Divergent Sequence
Show that the sequence {1, —1, 1, =1, 1, =1,..., (=1)"*',... } diverges.

Solution  Suppose the sequence converges to some number L. By choosing € = 1/2 in
the definition of the limit, all terms a, of the sequence with index » larger than some N
must lie within € = 1/2 of L. Since the number 1 appears repeatedly as every other term
of the sequence, we must have that the number 1 lies within the distance € = 1/2 of L. It
follows that |[L — 1| < 1/2, or equivalently, 1/2 < L < 3/2. Likewise, the number — 1
appears repeatedly in the sequence with arbitrarily high index. So we must also have that
IL — (=1)| < 1/2, orequivalently, =3/2 < L < —1/2. But the number L cannot lie in
both of the intervals (1/2, 3/2) and (—3/2, —1/2) because they have no overlap. There-
fore, no such limit L exists and so the sequence diverges.



Theorem:

lim L& = jjm L& (L’Hopital’s Rule )

n—oo g(x) n—oo g/(x)

EX: Use L’Hopital’s Rule to find

n

Ihim —.

By I"'Hopital’s Rule (differentiating with respect to »n).

Iim 2" = LIm 2"-In 2
n—00 5 n—0C0 5

= OO .,




Applying LHOpital's Rule to Determine Convergence

ﬂ:n—l—ln
" n — 1

Solution  The limit leads to the indeterminate form 1°. We can apply I'Hopital s Rule if
we first change the form to o0 « 0 by taking the natural logarithm of a,,:



Then.

lim Ina, = lim nln(”z ix 1) 20«0
n—hlx.' "—-b:Xl n I ]
(n -+ I)
|
n— 1
= lim g
n—0C l/n 0
.. —2fn" ~ 1)
= |im B I'Hopital’s Rule
n—>00 —1/n
2
— lim 21— =2
n—>xn —

Since Ina, — 2 and f(x) = e” is continuous, Theorem 4 tells us that

a, = e"%"—e?.

The sequence {a,} converges to e”.



The following six sequences converge to the limits listed below:

. In n
Iim

1. lim —5~ =0

2. lim Vn -

3. ,,li,."flcxl/" = ] (x = 0)

4. nll’nlx = (x| < 1)

- 9 ,,ll,.nl_ 1 + —) e” (any x)
6. lim —5 = 0 (any x)

In Formulas (3) through (6), x remains fixed as n — ©0.



Ex: Check the convergence of the following sequences :

l-a, = nTH
n+1 n+1 1
lim a, = lim =\/lim \/hm(1+—)— /1+—=\/1+0
n—oo n—-oo n n n—oo 00)
n—->oo
=1 (conv.)
3
'an:(l__)n

lim a,, = lim (1 — —)"— lim (1 + —)"=e~3 conv. (from 5)

n—0o n—0Co n—>0o



Geometric Series

Geometric series are series of the form
oo
a+‘+ar +ar*+ ---+ar™ '+ --- = E;ar"_"l
n—1

in which a and » are fixed real numbers and a &= 0. The series can alsg
) o ~
> .—oar”. The ratio r can be positive, as in

1 ‘ 1 Ln—l
1+2.4+---+(2) =

or negative, as in

1 1 e e
o d (L)



If r = 1, the nth partial sum of the geometric series 1s

sp=a+a(l) +a(1)? +---+ a(1)"! = na,

and the series diverges because lim,— s, = £00, depending on the sign of a. If r = —1,
the series diverges because the nth partial sums alternate between a and 0. If || # 1, we
can determine the convergence or divergence of the series in the following way:

Sn
rs,
Sn 5§ rSn
sp(1 — r)
Sp

I

a+ar+ar*+-+ar""!

ar +art+---+ar" '+ ar"

a — ar

a(l — r")

a(l — r")
1 o

Multiply s, by .

Subtract rs, from s,. Most of
the terms on the right cancel.
Factor.

We can solve for s, if r # 1.

If|r| < 1, then r" — 0 as n — o0 (as in Section 11.1) and s, —a/(1 — r). If [r| > 1,

then |r"|— o0 and the series diverges.



If |#| < 1, the geometric series a + ar + ar* + --- + ar" ' + --- converges

tWoiai(l — r):

= a
E n—1 — , lr| < 1.

If|r| = 1, the series diverges.

Ex: Z,?L":O(%)" isa G.S.

JE
1_

N |-

1 1
a=1 1= < 1 ~ convergeto T—=




The series

o0
(—1)"S 5 5 5
2~ =5—3%+ti6 @t
1s a geometric series witha = Sand »r = —1/4. It converges to
_ - S 4.

I —7 1% D

EX: Y7—o3™ divergence series because r=3>1

Express the repeating decimal 5.232323 ... as the ratio of two integers.



Solution ~ We look for a pattern in the sequence of partial sums that might lead to a for-
mula for s;. The key observation is the partial fraction decomposition

1 1

nin+1) " n+1

SO

k k 1 1
Z (n+l =§“l(ﬁ_n+l)

n=

_ (1 1 1 1 1 _1 Y S
S"_(l 2)*(2 3)+(3 4)+ +(k k+1)'

Removing parentheses and canceling adjacent terms of opposite sign collapses the sum to

and

s=l—;
. TI15



We now see that sy — 1 as k — ©0. The series converges, and its sum is 1:

o0

> 1 b

Tests of convergences : =in(n+ 1)

nth term test for divergence :

for series ).,—; a, if lim a, # 0 then the series is divergence
n—->oo

but lim a,, = 0 then this doesn’t mean that ), a,, is converge .

n—>co

EX:



o0
(a) D, n* diverges because n* — o0

n=1
mn+l
b)EI
ﬂ:

(¢) E (—1)"*! diverges because lim,—(—1)""! does not exist

: n+ 1
diverges because —; > |

OO
—n ; , —n 1
(d) ’; 5% 4 5 diverges because lim,—oc m+ 5 - 2 # 0.

The integral test

Let {a,} be a sequence of positive terms. Suppose that a, = f(n), where f is a
continuous, positive, decreasmg function of x for aII x = N (N a positive inte-

ger). Then the series S - v ay and the integral f v f(x) dx both converge or both
diverge.



Show that the p-series

< |
E-—~;,= + o+ o+ — +

(p a real constant) converges if p > 1, and diverges if p =

Solution If p = 1, then f(x) = 1/x” is a positive decreasing function of x. Since
/m d /m P dx = i [x—pH ]b
—dx = x m |————
y =¥ 1 oo | —p + X Ik
= lim ( - 1)
I = P b—© bp_l

1 1 bP ' — o0 as b—>
=1—p(0_])=}9_19 because p — 1 = 0.

the series converges by the Integral Test. We emphasize that the sum of the p-series is not
1/(p — 1).The series converges. but we don’t know the value it converges to.
Ifp < 1.thenl — p = 0 and

il : l—p 1y _
[ xpdx_ 1 —pbli»n;c.(b L) =

The series diverges by the Integral Test.




If p = 1, we have the (divergent) harmonic series

1,1 1
L +5+3++g+

We have convergence for p > 1 but divergence for every other value of p.

S =

converges by the Integral Test. The function f(x) = 1/(x? + 1) is positive, continuous,
and decreasing forx = 1, and

oo
f > ! dx = lim [arctan :cr]iJ
1 X +1 b—oc

= lim [arctan b — arctan 1]

h—no
g T _5
2 4 4



EX:

Zn 2 7. 9999 f( )_

f f(x)dx= llm ( f —dx) = llm (ln(lnx)]

ninn xlnx

lim (Inlnn — Inin2)=

n—->00
Y L s diverges
N=2 ninn &

The ratio test :

Let > a, be a series with positive terms and suppose that

T An+ 1 _
1m a, P -

Then

(a) the series converges if p << 1,

(b) the series diverges if p = 1 or p i1s infinite,
(¢) the test is inconclusive if p = 1.



(a) For the series 3,0 (2" + 5)/3".

Gy @V +8)B q oblas 1 o572 12 3
= — — — . ) o g s
n (2" + 5)/3" 3 2245 3 \l+5:2 31T 3

The series converges because p = 2/3 is less than 1. This does nof mean that 2/3 is
the sum of the series. In fact,

2n)! (2n + 2)!

,thena,s+| = (n+ Din + 1)t and

(
(b) Ifa, = i

pe1 NIN'(2n + 2)(2n + 1)(2n)!

A (n+ 1)/(n + 1)'(2n)!

 (2n+2)2n+1) 4n+2

(n+1)n+1) n+1

>4,



The root test :

Let > a, be a series with a, = O forn = N. and suppose that

lim WZ., = p.

F o e

Then

(a) the series converges if p < 1,
(b) the series diverges if p = 1 or p is infinite,
(¢) the test is inconclusive it p = 1.

oo __ 3\7n?
5% ,(1-3)

. n _372 — . _§7n:
lim [(1 n)" lim (1 n)

n—-oo n—-0oo

(8_3)7 :e—21 <1



Alternating Series :

A series of form ),,_,(—1)"a,, is called Alternating Series i.c.

P o(~1)ay = ag—a; +a, — a3 — -

or Yn=o(—=1)"an = Xy=o(cosnm)an

The Alternating Series Test :

The series Y., —-o(—1)"a, is convergence if :

1. a, >0 (a, ispositive)
2. a, = anyq foralln = N for some integer N
3. lima, =0

n—>00

Ex:
o nl 1
1—Yr—o(—=1D"= isconverge since lim ==0
n n—-oon
(cos nm) nn) . .
2. Y=o o2 = Ym=o(—1 ) — isconverge since
1
lim =0

n—oo 1+n2



Note:
1. IfY|(—=1D)"a, | is converge then ),(—1)"a,, is converge

If .(—=1)"a,, is diverge then ),|(—1)"a,, | is also diverge

The Absolutely & Conditional Convergence:

1. IfY(—1)"a, is convergence .this series is called Absolutely Convergent if )|(—1)"a,, |
1s converge.

2. If).,(—1)"a, is convergence and ),|(—1)"a,, | is divergence then
Y.(—1)"a, is called Conditional Convergent

1. Z,‘f:(,(—l)"% is conv. but ), ‘(_111) ‘ = Zf{’z(,% is diverge

Z,?:o(—l)"% is Conditionally Convergent

2 — Z;‘fzo(—l)"ﬁ is divergence because lim —— =1 # 0

n-oo n+1



Power Series :

This has the form Y5, a,(x — h)"® =a,;(x — h) +a,(x —h)*+ az(x —h)3......

To study these series we find the interval of x for absolute convergence by using the
ratio test .

EX: Find the interval of absolute convergence of :

. ann
1' Zn=0(_1) (Zn)'
Using ratio test lim [ < 1
n—oo an
. x?nt2 (2n)! L x?
AI—I& (2n+2)! © x2n <1 _Al—l;go (2n+2)(2n+1) <1

=0<1 for every value of x

. Interval of conv.is o0 > x > —o0



(x+5)"

Z?lo=0 3n 411
Using ratio test lim [ < 1
n—oo an
: nt1 (x+5)M1 4n _ 1 |§ |
rlll—{go 3 4n+l " T 3N (x45)n <1 rlll—glo 4(x+ o) | <1
- -1<%(x+5) <1
o x+5< 2
3 3

19 ~11 .
Y <x< e radius of conv. R=4/3



DEFINITIONS Taylor Series, Maclaurin Series

Let f be a function with derivatives of all orders throughout some interval con-
taining a as an interior point. Then the Taylor series generated by fatx = a is

(k) "
Ef 2« ~ af = fla) + f@)x - a) + 52— oy
(n)
+ - f n( )(x —a)" +
The Maclaurin series generated by f is
(k) " 0 (n) 0
Zf xt = fo) + frow+ P s B0

the Taylor series generated by fatx = 0.



EXAMPLE 1 Finding a Taylor Series

Find the Taylor series generated by f(x) = 1/x at a = 2. Where, if anywhere, does the
series converge to 1/x?

Solution We need to find f(2), f'(2), f"(2)..... Taking derivatives we get
fx) = x7, f2) =27 =1,
Fx) = —x 2. FI2Y = —
ix) = 21%72, f;(!z) =273 = é
f(x) = =31x74, f";(!Z) = —2—l4.

f™2) (=1

n'! _ 2ﬂ+| =

fP(x) = (—1)y"nx— D,



The Taylor series 1s

, f'2) )
f@) + FYr—2) % S — 2 oo 7= m— 2 4o
1 =2 (x — 2)° (x — 2)
_5- 22 + 23 _...+(_1)ﬂ 2n+l Ll
This is a geometric series with first term 1/2 and ratior = —(x — 2)/2. It converges ab-
solutely for |[x — 2| < 2 and its sum is
1/2 1 |

1+(x—2)/2:2+(x—2):x'



Differential Equations

A differential equation is a relationship between an independent variable, x, a
dependent variable y, and one or more derivatives of y with respect to x.

e.g. x° ::ll_i
42
.

=ysinx=0

d
+yd£+e3":0

Types : 1- Ordinary (O.D.E) If (D.E) involves only a single independent variable this
derivatives are called ordinary derivatives, and the equation is called ordinary (D.E)
Ex:

dy  dy
ax2 "X



2-Partial (P.D.E) If there are two or more independent variables derivatives are
called partial derivatives, and the equation is called partial(D.E)
Ex:

oy 02
A AT

xs—i —y2 = is an equation of the 1st order
d?y ; . .

XY 322 y*sinx = 0 is an equation of the 2nd order

d’y _dy

— — y% +e* =0 is an equation of the 3rd order

Degree: Is the higher degree of higher derivatives .

7. y" +y'° =sinx (order 2 degree 3)
ay W x
2. —zty =e (order 2 degree 1)



The Solution of First Order D.E.:
Separable :J<aill AL1\8
d
Let us consider equations of the form i f(x).F(y) and of the form

dx
gz — ;83, i.e. equations in which the right-hand side can be expressed as

products or quotients of functions of x or of y.
A few examples will show how we proceed.

dy  2x
Solve dx—y+1
We can rewrite this as (y + 1) % =X

Now integrate both sides with respect to x:

dy B A
j(y+ l)adx = ij dx i.e.

J(y+ l)dyzjz,xdx
},2

and this gives &+ y = x2+C



1
tan ly = —gln|2 —3x%| +c

Homogeneous : Lwilaic

1'he ditterential equation as torm
M(x.y) dx+N(x.y) dy =0.
Where M and N are functions of x and vy 1s called (H.d.e) i1f satisty the
condition

M (kx. ky) =k"M(x. v)

. Where k 1s constant.

N (kx. ky) =k"N(x. y)



For example

1- (x7 -y7)dx + 2xydy=0
M=x"-y°. N =2xy
M(kx.ky) =(kx)*- (ky)’= k’x* k'y* = kK*(x* —y*)
k(M)
N (kx.ky) =2 (k’xy)= kK*(2xVv)
k().
The equation 1s (H.d.e).
3- Solve (x-y)dx +xydy =0
M=x-y., N =xy
M(kx.ky) =(kx)- (ky)=k(x —y )
k(M)
N (kx.ky) = k* (xy)
k*(N).
The equation 1s not (H.d.e).



method:-
1. Putdx—f() 2 —Letv "

X
3-Put (Din (2) =2 = f (v)
4-From (2) y=xv, and dy = x dv+vdx, divided by dx

dy x2 4 y?
dx = xy

Here, all terms of the RHS are of degree 2, i.e. the equation is homogeneous.
We substitute y = vx (where v is a function of x)

Solve

DY v DY
dx dx
2 2 2 242 2
awmeg Y- X —i—;x:l—t—v
xy vXx v

The equation now becomes:

v 1 v2
W o g BT e 2 F

dx v

dv 1+ v?

dx v o
e i S |
o v Y

xdv_1

dx v

Now you can separate the variables and get the result in terms of v and x.



Y mx+
— = Inx C
7

DEeLdallse
Jvdv = Jldx
X
2
Vv
—=Ilnx+C
2

All that remains now is to express v back in terms of x and y. The substitution
weused was y=vx .. v= Y

X
1@ mrse

y? =2x*(Inx + C)

Ex: Solve x2dy + (y? — xy)dx = 0

dy _ xy-y* dy 'y y* . . y
— = ==== — ==—=_ jitis homogen let v==
= = . =~ 7 » itis homogeneous , let v="
d dv

Loy pPl===—=x—tv=v—1?

dx dx

dv _dx_____dv_ (rdx

v2 X vz J x



§=lnx+c =-=Inx+c

=

Exact : 4oLl
_The differential equation as form

M(x,y) dx+N(x,y) dy =0 ...(*)  with M _ 9N s exact . To solve (*) we integrate

ady 0x
J M(x,y) dx+[ N(x,y) dy=c

Ex: Solve(y2e®” + 4x3) dx + (nye"y2 — 3y2) dy=0

Z_IZ = y2e™" (2xy) + e¥" (2y)= " (2xy° + 2y)

Z—I;’ = 2xye™’ (y%) + e’ (2y)=e*’ (2xy3 + 2y)
_OM _ ON

oy = O (Eq. 1s exact)



M(x,y) dx+ N(x ,y)dy =0 ===== [ M(x,y) dx+[ N(x,y) dy=c
= [(y2e®" + 4x3) dx + [ (nye"y2 - 3y2) dy=c

2 xt 2 3 2
e + 4+ e —3L —c=—=—== 2eW +x*—yi=c

Linear: <&l

Is D.E. of the form % + P(x)y = Q(x) ,where P and Q are functions of x. To solve
it ,multiply both sides by integrating factor

I. Fef p(x)dx



dy 3

Solve xa; FYy =X

First we divide through by x to reduce the first term to a single %
. dy 1.,
1.6, a = ; Jy =X

Compare with {% + Py = Q} A :% and Q = x*

IF = o) P Jde:J%dx:Jnx

JF=eé®*—=y . IF=x

The solution is  y.IF = JQ.IFdx

: 5 X’
SO YX = [xz.xdx=Jx3dx=Z+C Lap=7+C



Solve & + ycotx = Ccosx

dx
dy [P =cotx
a*Py‘Q] B {chosx

IF = efpdx Jde = Jcotxdx= JEO—SE dx = Insinx

Compare with

SIN X

* IF = ™92 —giny

2
y.IF=JQ.IFdx ysinx:Jsinxcosxdx:ﬂI¥+C

Sin x

y:TJrCcosecx



Bernoulli’s Equation :
These are equations of the form:

dy . rz

where, as before, P and Q are functions of x (or constants).
The trick is the same every time:

(a) Divide both sides by y»”. This gives:
_,, Ay 3
] 1—r2
Vv o TR ry = Q

(b) Now put z = y1—7

hat, diff iati diz — dz 2
so that, differentiating, — = ....... P = —-—n)y dx



So we have:

% )
y“”%+Py1_" =Q (2)
Put z=y'™ so that % =(1- n)y‘"%
If we now multiply (2) by (1 — n) we shall convert the first term into d—i
(1 -y Lt (L -npy = (1-m)Q
Remembering that z = y!=" and that % =(1-n)y™ %, this last line can now
be written % + P1z = Q; with P; and Q; functions of x.

This we can solve by use of an integrating factor in the normal way.
Finally, having found z, we convert back to y using z = y!=".



dy 1 5
Solve a+;y—xy

(a) Divide through by y?,

(b) Now put z = y!-", j.e. in this case z = y1-2 = y~!

dz dy
_y1 . 82 24y
z=y Ll He
(c) Multiply through the equation by (—1), to make the first term %
dy 1 _
=29y 1.1
Y ax  x” x
dz 1 . dz
so that ax xi= X which is of the form P + Pz = Q so that you can now

solve the equation by the normal integrating factor method. What do you get?



y=(Cx-x)"

_ dy,___ 4. 3x
Solve 2y Ba—yfﬁ

2y — 3= = i
¥ dx >
Q o E B }f4€3x
dx 3 3
ady 2 5 2 e
ax_ 3Y T 73
dz d
— pl—4 _ ,—3 . QE - ao—-4SV
Put z v V e 3y A
Multiplying through by (—3), the equation becomes:
dy
- —q —3 __ A
3y A + 2y &
e, 92 + 2z = e3*
dx
IF = eJ Pox Jde=I2c1x=2‘.x . IF = e*
ze?* — Je3“€2“dx = J-eﬁxdx
Sx
=S-+i0
- Ez.t e."'u.t + A
But z =y >3 - 5
2 SEZJ:



The Second Order (D.E):F(x,2>, 5 4’y =)
1. Special Type: 4ala dlls ( reduced to first order )

2
The equation of the form F( X,% , %) can be reduced to first order by suppose that :

_dy dp _d?y
dx dx dx?

Then the equation F( X,d 7 2) takes form F( x,P, —) which is first order (D.E.)
EX:

Solve the following ditterential equation

2
x4y LYy
dx? d-‘
21
L A R 1 (**)
dy? xd.t
2
dy iy _ d
Let p== and =L = 2 putin(**)
dx dx X



-jf- + lp = 1/x” , which linear in p,
A o X
=/ P = [= e = =y
Ip=JIQ dx +c = Ip=Jx(1/x*)dx +c=Inx+c
s Xp=Inx +c¢

P = (Inx)/x + ¢/x

Let :—” = (Inx)/x + ¢/x

X
dy= [(Inx)/x]dx +( ¢/x)dX.
y = (Inx)*/2 + ¢ Inx +¢,



Homogeneous : 4wsiladia

The equation of the form :

ay" +by'+cy=0 or (*)
a’y , 9y _
a5 +b_—+cy=0 or
aD?y + bDy + cy = 0 where a,b,c are constant and D = % is called

How to solve this equation we shall now find how to determine m
such that

y:emx ’ yl = me™* ,y" = m2e™x

put in(*)
am?e™ + bme™* + ce™ =

e™ (am? + bm+c) =0



Since e™* + ( (am? + bm +c¢) =0 (**) which is called the characteristic equation
Then we say that y=e™* is the solution of (*) <> m is the root of (**)
The general solution of (*) there is three cases of root :
If m; # m, in equation (**) , the solution of the homogenous equation (*) is
y=c,e™* + c,e™2*
If m; = m, in equation (**) , the solution of the homogenous equation (*) is
cie™ 4+ coxe™

If myand m, roots (im; = a + fi ,,,m, = a — Bi ) in equation (**) , the solution of the
homogenous equation (*) is

y=e**(cysinfx + c,cosfx)



dy
2
Auxlhary equation: m*+5m+6=0

L o(m+2)m+3)=0 . m=-2o0rm=-3

dy

— 1= +6y 0

*. Solution is y=Ae ™ +Be >

dy  dy

ae

Auxiliary equation: m* +4m+4=0
(m+2)(m+2)=0 .. m=-2 (twice)

The solution is: y = ¢ (A + Bx)

Solve +4y =0



Non _homogenous (D.E): 4wilaia y&

Consider the equation of the form :

ay" + by' +cy = f(x) (#)

where a,b,c are constant 1s a non-homogeneous (D.E.) of second order

To find the general solution of (#)

1. We find the solution of homogenous part y;of eq. (#)
2. We find any another special solution y,eq.(#)

Then the general solution of (#)1s 'y = yp + ¥y
Un determined Coefficients Method:

We have seen that to find the particular integral, we assume the general form
of the function on the RHS of the equation and determine the values of the
constants by substitution in the whole equation and equating coefficients.
These will be useful:



Ke?* when e®* not found in y;,
Kxe®* when e®* is found in y, (only once)
Kx2e%when e?* found in yj, (twice)

Ax™ + Bx" 1+ ..... K

Asin ax+Bcos ax

EX: Solve y"' — 2y’ +y = 3e?* —5e** (1)
Sol:

1. Wefindy, ie. y"—2y"+y=0
~m?f=-2m+1=0 - (m—1)2=0 - m=1

~ Y = cre* + cyxe”
let y, = Ke** + He**



yp'=2Ke?* + 4He**
Vp''=4Ke** + 16He** putin(l) wegety,"” —2y," +y, = 3e** — 5e**
~ 4Ke** + 16He** — 2(2Ke** + 4He*) + Ke** + He**=3e?* — 5e**

Ke?* + 9He** = 3¢%¥ — 5% - K=3 ,H=-5/9
sy, = 3e?* —5/9He**

Ly =yp + ¥, 2y=cie* + c;xe*+3e** —5/9He**

Ex: solve y"' — 4y’ — 5y = 2sin 2x (¥)
Sol:

1-We find y;, ie. y' —4 -5y =0

~m?—4m—5=0->(m-5)(m+l)=0->m;=5m,=-1



nyp = cre + e
Lety,=A sin 2x + B cos 2x
¥p' = 2Acos 2x — 2B sin 2x
¥p'' =-4 Asin 2x —4 B cos 2x put in (*)we get y,,"" — 4y, — 5y,= 2 sin2x

(—4 A sin 2x —4 B cos 2x ) —4(2Acos 2x — 2B sin 2x ) —5(A sin 2x + B cos 2x)=2
sin 2x

(—4A + 8B — 5A) sin 2x+(-4 B-8A-5B)= 2 sin2x
Sin 2x: 8B-9A=2
Cos 2x:-9B-8A=0 we solve this eq. to find A and B

-18 16 -18 . 16
A=— B=— - =——=s1n 2Xx + — 2X
145 145 " 1a5° 145 ©9°
S Y=Yt

=cie’* + c,e ™ ——sin 2x + — cos 2x
Y 1 2 145 145



Variation of Parameters : <) sl ,uas 44, )

Consider the eq. of the form ay” + by’ +cy = f(x) ..... (#) which is non
homogeneous 2™ D.E . to solve (#)

1. We find y;, (solution H-part)

Yn = €1y1 + c2y¥, where c¢q, ¢, are arbitrary constants and y, , y, are functions
which is the solution of ( H-part)

1. Lety, =v1y; + vy, (general solution of non H- part) v;, v, are functions of x
1.e. we replace ¢4, ¢, by viand v ,
2. Then these equations are satisfies

vllyl + vzlyz == 0 ......... (1)
vllyll + v2,y2, = f(X) ........ (2)

We find v, and v,’ by using( Grammer’s Rule )

0 ¥ Y1 0 |
VT 7] R LR i)
1 = |1y1 Y2 2 T |Y1 Y2

vi' vl vi' vo!

Then y=yy + y, (solution of (#))



Ex: Solve y"' + y = secx

Sol:
Y=YntW
Yp = C1SIinx + ¢, COS X
Lety, = viy1 + V22
[.e.yp=v1SIinX + vV ,CosX
~ vy sinx + vy’ cosx =0 ....... (1)
v, cosx — v,'sinx =secx ....... (2)
|0 cosx vlzfdx—>v1:x
v 1 _ lsecx —sinx _ —CO0SX secx :1 .
1 = |sinx cosx —sin2x—cos2x |smx 0 _
cosx —sinx UZI — _lcosx secx!| _SINXS€cX

|sinx cosx -1
cosx —sinx



—-sinx

. sinxsecx
Uy = f

— dx = In|cosx]|

dx — v, =
2 fCOSX

LYy =11y VY, > Y = xsinx + In[cosx|cos x

Function of many variables:

In many engineering problems we come across function with many variables as an
example the volume of a cylinder is a function of radius of the base and the high

V=mr?h .

In general we may defined w=f(x4, x5, X3 ....X,) X1, X5, X3 .... X, are called the
independent variables and w is called dependent variable.



Domain and range:

The domain of w is the set of x4, x5, X3 .... X, that made w real and defined .

The corresponding w i1s called the range of function .

Ex:

Function domain Range
W=,/y2 — x2 y = x? w =0
W=sin x y entire plane -1<w <1
W=In(x-y) X> y o< w< ™

Derivative (Partial derivative):

If w=f(x,y) the partial derivative of f with respect that x denoted by g—j:

ow ..
or—— or f, and is given by

ox Ax—-0 Ax
w.r.t. X

9 _ iy [XHAx)-/(xy) y 1s considered have to be a constant when diff.



Similarly

. V+AY)—F(x, : : .
9F _ lim fOoy+Ay)=f (xy) x 1s considered have to be a constant when diff. w.r.t.
dy Ay—0 Ay

y

Example:

1. Find f, andf, for w=f(x,y)=sin(xy)+y*x+5
Sol:
fx =y cos(x y)+ y?
fy = xcos(xy) + 2xy

2. find f, andf,, for w=f(x,y) = 24

y+cosx

sol:

__ (y+cosx)(0)-2y(—sinx) _ 2ysinx
B (y+cosx)? (y+cosx)?

fx fy How



Second order partial derivatives :

d%f 9%f

0x2 XX ayz - JYyy 0x0y - Jyx dydx - Jxy

Example: f(x,y)=x cos y+ye*

[, = cosy + ye*
92f X
%2 =fxx = Ve

fy = —siny + e*
92f
a—yZnyy = —cosy

0%f 0°f
axdy fyx ayax_fxy H.w




1. if Z=x3 + y* + xsiny + e* find Z,, and Z,, at(0,0)

2IfZ = tan™? (%) then show that x% + yg—; =0

Implicit partial derivative:

Assume the equation xy+z3x — 2yz

= 0 defineds z as a differential fn. of x and y find % and Z—; at x=y =z=1

Sol:
3 2,92, 0z _
y+z +3zxax 2yax—0
0z
(3z%x — 2y)a =—y—2z3
0z  -y—-z° —-1-1_ 0z




Chain Rule:

If w=f(x,y) and x=x(t), y=y(t) then w=f(x(t),y(t))=g(t)
Af _ o dx o dy

dt fx dt+f Y dt

Also w=f(x,y,z)

Af _ pdx o dy . dz

dt fx dt+fy dt t+ /2 dt

Example: If f(x,y,z)=2xy+y3 + z%x and x(t)=Vt ,y(t)=t? — 1 ,z(t)Z% find Z—{ at t=1.

Sol: at t=1: x=1, y=0,z=1

df _ pdx, o dy o dz
dt Jx dt+fy dt t+ /2 dt

fr=2y+z?=0+1=1



fy=2x4+3y*=2+0=2
f,=2zx =2

— 1 —
=57
d

f_pdx, o dy 4z _ 1y 1 _ =
E_fxdt+fydt+fzdt_1x2+2x2 2X1=25/2

- =2t =2 = ——=-1
2 7T ‘TTeT

X 2

Example: If {(x,y,z)=2xy+z and x=cost, y=sint, z=t find Z—{ att=0. H.W

Ex: let w=xyz =f(X,y,z)

. d
x=rcost , y=rsint, z=r? ﬁndd—];

Total Derivatives:

df(x,y)= fxdx + f,dy




Laplace equation:

A function f(x,y,z) 1s said to satisfy the 3D Laplace equation if

fxx+fyy+fzz=0

Ex: show that f(x,y,z)=e3***Y cosz satisfy the 3D Laplace equation. H.W.
Ex: for what values of n the function f(x,y,z) =(x? + y?+ z%)"
eq.

will satisfy 3D Laplace

Directional Derivative:

Let w=f(x ,y). The direction derivative of f at a pointp. (x., y-) in the direction
of the point p4(x4,y;) 1s given by:

af — .
15 = gradf(p.).u



Where grad f is called the gradient vector of f.

aof . of
5y’ taz"

df = af |+
gradf = Pyl
And U is a unit vector.

P-D1
pop1 |

Example: Find the directional derivative of f(x,y,z)=xy?z3

U=

at the pointp- (3,2,1)in the direction towards p(5,3,2)

D1 2i+j+k 1

U= Gyl ~ VemeweE Ve LTI T
9 _ 2,3 of _
o = Y°zZ° at p (3,2,1) P 4



af

3y = Z.X,'yZ at Do (39291) dy =12

ar _ . of_

~, = 3xy“z°at p- (3,2,1) oz 0

af _ ———3 = : L (9; ] =20
L = gradf (p).i=(4i +12j + 36k). 7= (2i + j + k) = 2

Exercise : 1-Find the directional derivative of f(x,y)=yx? + xy? at the pointp. (1,1)in the direction
towards p1(2,4).

2- Find the directional derivative of w=f(x,y,z)= z3x + xyz at the pointp- (1,0,1) in the direction of
vector

A= 2i-j+2k.



Other properties and applications of gradient vector :

of . of . of
V—operater=gradf=al+@]+£k

Properties

f and g are two scalar functions

1.V(f + g) = Vf + Vg

2.V(cf) = cVf

3.V(fg) = fVg + gVf Applications:

1- th lline NL=—= =222
€ normal 11ne€ fe fy 7

2- the tangent plane T.P. f,(x —xo) + f,(y — o) + f(z — 2) = 0



Divergence of a vector field:

If F(x,y,z)=F(x,y,2)i + F,(x,y,z)j + F3(x,y, z)k is avector field then the div .of
this vector is

OF. OF OF:
14 %72 L 9%

DivF = V.F = ox T oy T oz

Vector Functions

Def(vector functions): These are vectors whose components are functions

F(t) =X(1) 1 +Y(t) j +Z(t)k
This may represent a space curve or the motion of particle in space .
Ex: X(t) =cos't Y(t) =sin t Z(t)=-1
Note:
The line in a space is a special case of the vector function.

F(t) = (xo+at)i +(yo+bt) j +( zo+ct)k



Derivative:

d ~ F(t—At) —F(t)
g F@O) = lim At

=X'(t)i+Y'(t)j +Z'(t) k
d
— F(t) = the tangent vector to the path

dt
Ex:

Find%F(t) if F(t) = tan ‘ti+Intj+e tk
Sol:

1 1
l+?]—e‘tk

d
—F —
dt (£) 1+ t2

_ a _ 1., . -1
At t=1 th(t)—21+] e "k



Velocity and acceleration:

Let R(t) the position vector given the position of moving particle in a space then

%R(t) = V(t) the velocity vector and % V(t) = a(t)the acceleration

|[V(t)| = S(t) is speed scalar function of time

VI = VX'(D2 +Y'(D2 + Z' ()
Find : a.. the velocity vector att = %

b..the acceleration att = %

a.. V(1) Z%R(t) = —3sinti+ 3costj + 2k

T 1 1
V(Z) = -3 i+3 )42

b.. a(t) =£ V(t) = —3 cost i —3sintj+0k

1 . 1 .
a(%) = 3\/_§l_3\/_51

and S()=v9sint?2+9cost?2+4 =413




The length of the curve(distance traveled):

The length of the curve R(t) =X(t)+Y(t)+Z(t) from t- to t is

L= s=[J/X®O+Y([®)?+2' (% dt

=/, Iv(®) dt

In this example take t=0 to 27

s=L=["VT3dt = VI3t =(VI3 x 21) — (VI3 x 0) = 213

The TNB system:

dR(t)

_ . __d _V(®

1. The unit tangent vector T: T NORZO)]
_ _dT/dt
2. The normal vector N: ~|aT/dt]

3. The binormal vector B : B=TXx N



Find T, N and B for the circular motion R(t) = cos2ti +sin2tj
Sol:
V(t)=-2sin2ti+2cos2tj and [V (t)| =2

V(t) _ —2sin2ti+2cos2t]

T= ol . =- sin2t i+cos2tj
dT/dt = —2cos2ti — 2sin2tj
= ar/at _ —Ccos2ti — sin2tj
|dT /dt|
L Ji k

B=TX N =|—sin2t cos2t 0|=k
—cos2t —sin2t O



T N B are orthogonal vectors i.e.
T.N=0 , N.B=0and T.B=0
IT| =IN| =[B| =1

Curvature: Rate change of the angle of the inclination @ with respect to arc length s

_|ao
K= ds
And the radius of curvatureis p = P
dT
Theorem — |22
ds




a. if the curve is given y=£(x)

YII
T[1+Y'2]3/2

b. if the curve is given x=g(y)

d2x

d 2
K=1+(}é)2

dy

c. if the curve is given y=f(t) and x=g(t)

_ xy-yx]|
_[x2+y2]3/2

or

[Vxal
K=—+
14

from which we can find K for a space curve



find the curvature of the curves
R(t)=a costit+asintj atanytimet
sol:

R=acosti+asint]

V=-asinti+ acostj

a=-acosti- asint]

i ik
Vxa .
K=||V|3| VXa=|—asint acost O0|=a’k
—acost —asint 0

V| =\/azsint2 + a?cost? =a

_vxal _a* 1
a

_ V|3 T a3




The Complex numbers

Def: The order pair_z=(x, y) where x and y are real numbers is called the complex number.

Notations:

1. The complex number (0,y) is called pure imaginary number.

2. The real number x is called the real part of z and The real number y is called the
imaginary part of z.

3. We say that the complex numbers(x;, y;) and(x,, y,) are equal if and only if x; = x,
and y; = y,.

4. The add ion and the multiplication are defined as: z; + z,— (x1,y1) + (x5, ¥,) = (3
+Xx2,91 + ¥2)

21.23=(%1,¥1)- (X2, ¥2) = (X1X2 — y1¥2 ,X1¥2 + X291)
1. Ifi=+v/—1 then we can write the complex number z = x+iy and
21.23=(%1, ¥1)- (X2, ¥2) = (X1X2 — ¥1¥2 X1Y2 + X21)
21+ 25=( %y +iy1) + (2 + iy2) =( x+x2) +i(y1 + y2)



Examples:

1. (2+31)+(1+41)=(2+1)+ (3+4)1=3+71
2. (1=1).2+31)=(1X2 ~(-1x 3) + (1 x 3 + (2 X (—1))i=5+i
3. 1P = (i) i=—i

Algebraic _properties :

1.The commutative law : z; + z,_2z, + z; and Z1.Z9= Zy.Zq V 24,2, €C
2. Z1 + (ZZ + Z3) = (Zl + Zz) + Z3

Zl' (Zz. Z3) — (Zl' Zz). Z3



4.The additive identity is 0=0+0i then V zeC ,z+0=0+z=z

5.The multiple identity is 1=1+0i then VzeC ,z.1=1.z=z

6.The additive inverse V zeC 3 — z = —x — iy st z+(-z)= —z+ z=0

7. The multiplicative inverse V ze¢ 3 z~1 st. zz l=z1lz=1

8. the conjugate of the complex number z=x+1yisz~ = x—1y
Examples:

1.(6+51)-(4-31)+(2+71)=4+15i
3.(vV2-1)—=i(1-V2 i)=(v2-1)— (i + V2)=-2i
4The conjugate of 3-7i= 3+71

6. find the inverse of —2+31

z 1=

—3i

= = X =
—2+3i -2+3i —-2-3i 13

1 1 1 —2-3i -2-3i -2
Z

13

+

13



Graphical representation of the complex number:

Every complex number z=x+ 1y corresponding one point in the plane XY For example
(0,0) corresponds to the complex number z=0+01 and the number z represents the
distance from (0,0) to (x ,y) therefore the plane is called the complex plane ,X is called
the real axis and Y is called the imaginary axis. Y

The absolute value of the complex number:

The absolute value of the complex number z=x+ 1y is defined as fellows:
|z] = Vx? +y?
Note:
1. The number z represents the distains between the origin and (X, y)

2. Ifz; = (x4,y1)and z, = (x5, y,) then the distance between them is

|z — 25| = \/(x1 —x2)% + (1 — y2)?



3.1z1. 25| = |z41]. |2;]

Z1

|z4|
= -1 Z2¢0
Z

|2 |

4.

Example:

z=2-31 then

|z = Jx2 + y2 =22+ (-3)2=V4+9 =13

polar form the complex number:

Letr, O are the polar coordinates correponding to (%, y)that represents z

x=rcosf ,y=rsinf

z=r(cos @ + isinf) = re®?



s.t. r=|z|= Jx? + y? and 0 it is the angle of the complex number z

,itis called (argument)andcan be write arg(z) = tan~?! (g)

Examples:
1. write z=1+1 by the polar form :

sol:

r= Jx2+y2=V1Z2+12 =42

1
0 = tan~1 (I) =tan"1(1) =

SR N

zZ = \/E(COS%-F ising) = ¢



1 TC

.TC
T . . Tt —
7= cos— + i sin— =e'z
2 2
seince cos 0 and sin 0 are pirodic in 2 t then argz = 6 + 2kn

if k=0,argz= 0 < < 1

notations:

1. arg(zq + z,) = argz; + argz;
2. let zy =7 (cosO + isinf) ,z, = p(cosP +isind)

Z1-Z
= rp(cos 8 + isinf). (cos@ +isin@) = rp(cos BcosP + isin 6 sin®) = rp(cos(O



arg(z,.2,) = 6+ 0
Z

1. arg — = arg z, — argz;
2

2. for all the integer number n z™ = r™*(cosn 6 + isinnf) = r™*(cosf + isinG)"

Example: represent the following complex numbers in the standard form:

; VIA
7=e?® > r=1 and0=5

X=rcos@=1*cos§=0 y=rsin9=1.sin§= 1+1=1

Z=x+iy=0-+i.



The complex function:

Let S be non empty set of the points in the complex plane if V zeS I w

s.t. w=1{(2). i.e.f: S— € , Sis called domain f and f(z) is called the range.
We can write f(z) by the following:

w={(z) =u(x ,y)+iv(x,y) ,u,v are real functions.

Example:

1. f(z2)=x?+2y —i2xy3,, ux, y)=x2%+2y ,v(x,y) = —i2xy3
2. f(z)=z? write f(z) by u and v.

sol: z=x+iy — f(z2)=(x + iy?)

f(z)=x? + 2ixy — y? =x? + y? — 2ixy

ux, y)=x2% + y? , v(x,y) = =2ixy



